THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Supplementary Exercise 5

- 1. (a) Let A be a subset of \mathbb{R} . State the definition of a cluster point of A.
 - (b) Let A be a subset of \mathbb{R} , c be a cluster point of A, and $f : A \to \mathbb{R}$ be a function. State the definition of $\lim_{x\to c} f(x) = L$, where L is a real number. (Remark: The definition is usually called $\delta - \epsilon$ definition.)
 - (c) Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = 3x + 2. By using the definition stated in (b), show that $\lim_{x \to 1} f(x) = 5$.

Ans:

- (a) c is said to be a cluster point of A if for all $\delta > 0$, there exists $x \in A \setminus \{c\}$ such that $|x - c| < \delta$. Symbolic: $(\forall \delta > 0)(\exists x \in A \setminus \{c\})(|x - c| < \delta)$
- (b) $\lim_{x \to c} f(x) = L$ if

for all $\epsilon > 0$, there exists $\delta > 0$ such that if $x \in A$ with $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$. Symbolic: $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in A \text{ and } 0 < |x - c| < \delta)(|f(x) - L| < \epsilon)$

(c) Let $\epsilon > 0$. Take $\delta = \frac{\epsilon}{3} > 0$. Then, for all $0 < |x - 1| < \delta$, we have

Therefore, $\lim_{x \to 1} f(x) = 5.$

2. Using the δ - ϵ definition, show that

(a)
$$\lim_{x \to c} x^3 = c^3;$$

(b) $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2} = -1.$

Ans:

(a) Let $\epsilon > 0$. Take $\delta = \min\{1, \frac{\epsilon}{3|c|^2 + 3|c| + 1}\}$. Then, for all $0 < |x - c| < \delta$, we have

Also,

$$|x^{2} + xc + c^{2}| \le |x|^{2} + |x||c| + |c|^{2} \le (|c|+1)^{2} + (|c|+1)|c| + |c|^{2} = 3|c|^{2} + 3|c| + 1$$

Then,

$$\begin{split} |x-c||x^2+xc+c^2| &< \frac{\epsilon}{3|c|^2+3|c|+1} \cdot (3|c|^2+3|c|+1) \\ |x^3-c^3| &< \epsilon \\ |f(x)-c^3| &< \epsilon \end{split}$$

Therefore, $\lim_{x \to c} f(x) = c^3$.

(b) Let $\epsilon > 0$. Take $\delta = \epsilon$.

Then, for all $0 < |x - 2| < \delta$, we have

$$\begin{aligned} |x-2| &< \epsilon \\ |(x-3) - (-1)| &< \epsilon \\ \left| \frac{(x-3)(x-2)}{x-2} - (-1) \right| &< \epsilon \\ |f(x) - (-1)| &< \epsilon \end{aligned} \qquad (0 < |x-2| \Rightarrow x - 2 \neq 0)$$

Therefore, $\lim_{x \to 2} f(x) = -1.$

- 3. Let A be a subset of \mathbb{R} , c be a cluster point of A, and $f, g : A \to \mathbb{R}$ be functions such that $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$. Show that
 - (a) $\lim_{x \to c} f(x) + g(x) = L + M;$ (b) if $g(x) \neq 0$ for all $x \in A$ and $M \neq 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}.$

Ans:

(a) Let $\epsilon > 0$.

Since $\lim_{x\to c} f(x) = L$, there exists $\delta_1 > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta_1$, we have $|f(x) - L| < \frac{\epsilon}{2}$, and $\lim_{x\to c} g(x) = M$, there exists $\delta_2 > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta_2$, we have $|g(x) - M| < \frac{\epsilon}{2}$.

Take $\delta = \min{\{\delta_1, \delta_2\}} > 0$, then for all $x \in A$ with $0 < |x - c| < \delta$, we have

$$|(f(x) + g(x)) - (L + M)| \leq |f(x) - L| + |g(x) - M|$$
$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon$$

Therefore, $\lim_{x \to c} f(x) + g(x) = L + M$.

(b) Since $\lim_{x \to c} g(x) = M$, consider $\epsilon_0 = \frac{|M|}{2}$, there exists $\delta_1 > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta_1$, we have $|g(x) - M| < \epsilon_0 = \frac{|M|}{2}$ and then

$$M - \frac{|M|}{2} < g(x) < M + \frac{|M|}{2}.$$

If M > 0, then |M| = M and $0 < \frac{M}{2} < g(x)$, so $\frac{M}{2} < |g(x)|$. If M < 0, then |M| = -M and $g(x) < M + \frac{|M|}{2} = -\frac{|M|}{2}$, so $\frac{M}{2} < |g(x)|$. Therefore, for all $x \in A$ with $0 < |x - c| < \delta_1$, we have $\frac{M}{2} < |g(x)|$ and so $\frac{1}{|g(x)|} < \frac{2}{|M|}$.

Let $\epsilon > 0$.

Since $\lim_{x\to c} f(x) = L$, there exists $\delta_2 > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta_2$, we have $|f(x) - L| < \frac{|M|\epsilon}{4}$, and $\lim_{x\to c} g(x) = M$, there exists $\delta_2 > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta_3$, we have $|g(x) - M| < \frac{|M|^2\epsilon}{4|L|}$.

Take $\delta = \min\{\delta_1, \delta_2, \delta_3\} > 0$, then for all $x \in A$ with $0 < |x - c| < \delta$, we have

$$\begin{vmatrix} f(x) \\ g(x) \\ - \frac{L}{M} \end{vmatrix} = \begin{vmatrix} f(x)M - g(x)L \\ g(x)M \end{vmatrix}$$
$$= \begin{vmatrix} f(x)M - LM + LM - g(x)L \\ g(x)M \end{vmatrix}$$
$$= \begin{vmatrix} (f(x) - L)M - (g(x) - M)L \\ g(x)M \end{vmatrix}$$
$$\leq \frac{|f(x) - L|}{|g(x)|} + \frac{|g(x) - M||L|}{|g(x)||M|}$$
$$\leq \frac{|M|\epsilon}{4} \cdot \frac{2}{M} + \frac{|M|^2\epsilon}{4|L|} \cdot \frac{2}{|M|} \cdot \frac{|L|}{|M|}$$
$$\leq \epsilon$$

Therefore, $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$.

4. Suppose that c is a cluster point of A and $f, g : A \to \mathbb{R}$ are two functions such that $\lim_{x \to c} f(x) = 0$ and g is bounded on a neighborhood of c.

Show that $\lim_{x \to c} f(x)g(x) = 0.$

Ans:

Since g is bounded on a neighborhood of c, there exist $\delta_1 > 0$ and M > 0 such that $|g(x)| \le M$ for all $x \in A$ with $0 < |x - c| < \delta_1$.

Let $\epsilon > 0$.

Since $\lim_{x\to c} f(x) = 0$, there exists $\delta_2 > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta_2$, we have $|f(x) - 0| < \frac{\epsilon}{M}$, i.e. $|f(x)| < \frac{\epsilon}{M}$.

Take $\delta = \min{\{\delta_1, \delta_2\}} > 0$, then for all $x \in A$ with $0 < |x - c| < \delta$, we have

$$\begin{aligned} |f(x)g(x) - 0| &= |f(x)||g(x)| \\ &< \frac{\epsilon}{M} \cdot M \\ &= \epsilon \end{aligned}$$

Therefore, $\lim_{x \to c} f(x)g(x) = 0.$

5. Let A be a subset of \mathbb{R} , c be a cluster point of A, and $f : A \to \mathbb{R}$ be a function such that $a \leq f(x) \leq b$ for all $x \in A \setminus \{c\}$ and $\lim_{x \to c} f(x) = L$ exists.

Show that $a \leq L \leq b$.

Ans:

Let $\epsilon > 0$.

Since $\lim_{x\to c} f(x) = L$ exists, there exists $\delta > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta$, we have $|f(x) - L| < \epsilon$ and so

$$a - \epsilon \le f(x) - \epsilon < L < f(x) + \epsilon \le b + \epsilon.$$

We have $a - \epsilon \leq L \leq b + \epsilon$ for all $\epsilon > 0$ and so $a \leq L \leq b$.

6. Let $c \in \mathbb{R}$ and let $f : \mathbb{R} \setminus \{c\} \to \mathbb{R}$.

The right hand limit of f at c is $L \in \mathbb{R}$ (denoted by $\lim_{x \to c^+} f(x) = L$) if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $c - \delta < x < c$, we have $|f(x) - L| < \epsilon$.

The left hand limit (denoted by $\lim_{x \to c^-} f(x) = L$) can be defined in a similar way.

Show that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L$.

Ans:

 (\Rightarrow) Suppose that $\lim_{x \to c} f(x) = L$.

Let $\epsilon > 0$, there exist $\delta > 0$, such that for all $0 < |x - c| < \delta$ (i.e. $c - \delta < x < c$ or $c < x < c + \delta$), we have $|f(x) - L| < \epsilon$.

In particular, when $c < x < c + \delta$, we have $|f(x) - L| < \epsilon$ and so $\lim_{x \to c^+} f(x) = L$; when $c - \delta < x < c$, we also have $|f(x) - L| < \epsilon$ and so $\lim_{x \to c^-} f(x) = L$.

(<) Suppose that $\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$. Let $\epsilon > 0$.

Since $\lim_{x \to c^+} f(x) = L$, there exist $\delta_1 > 0$, such that for all $c < x < c + \delta_1$, we have $|f(x) - L| < \epsilon$. Since $\lim_{x \to c^-} f(x) = L$, there exist $\delta_2 > 0$, such that for all $c - \delta_2 < x < c$, we have $|f(x) - L| < \epsilon$. Take $\delta = \min\{\delta_1, \delta_2\} > 0$.

Then for all $c < x < c + \delta$, we have $c < x < c + \delta_1$, and so $|f(x) - L| < \epsilon$; for all $c - \delta < x < c$, we have $c - \delta_2 < x < c$, and so $|f(x) - L| < \epsilon$.

That is, for all $0 < |x - c| < \delta$, we have $|f(x) - L| < \epsilon$, so $\lim_{x \to c} f(x) = L$.